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When John Bernoulli amused himself in 1696 with the design of a slide
of such shape as to permit the proverbial, infinitely smooth, elephant of
aceglectible volume to slide from puint A to point B (Figure 1) in the
shortest possible time, a new mathematical discipline, the Calculus of

Variations, came into existence.

In the middle of the 18th century, this problem was subjected to
generalizations and analysis by L. Euler and J. L. de Lagrange. An example
of such a more general problem is the so-called problem of Lagrange, namely,
to find a vector function y: R -+ R” (curve in (n + 1)-dimeneional (t,y)-space)
which satisfies specified boundary conditions at ¢t = 0 and for some t = T > 0,
satisfies a set of constraining differential equstions of first cider,

n U

(1) ¢(t,y,y') = 0, where ¢: R x R" x »" R¥, | < nq,

and is svch that



T
(2) I(y) -J £(t,y(t),y'(t))dt, f: R x R ~ g™ + K,

0
yields the smallest value that is attainable. We shall hereby assume without
much loss of generality, that f, ¢ and their partial derivatives of first
order with respect to all variables are continuous.

For this problem to have meaning, ¢: has to specify the type o¢f functions
rhat are admitted to compete for the minimum of (2). 1In the classical theory,
one usually required that y' be sectionally continuous (y' ¢ S). Then, the
solution y, if it exists, is sectionally smcoth. (The understanding is that

t
y(t) = y(0) + J y'(s)ds.) [1, p. 187ff, 12, p. 325ff.] On the other hard,

0

one could permit y' to be bounded and measurable (y' ¢ M). Then, y is
absolutely continuous [5]. An even more general case is the one where the
so-called generalized curves which were introduced by L. C. Young are per-
mitted to compete [8].

A number of nccessary and sufficient conditions for a function to yielid
a minimum for (2) have been derived over the past 250 years. The more recent
work consisted chiefly in generalizing, refining, and 'rigor-proofing' the
work of the 18th and early 19th century mathematicians.

The most prominent and most widely known necessary conditions are the

multiplier rule and the Weierstrass condition.
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The multivlier rule states that if y is a solutiocu with v' ¢ S, then there
exists 2 vector function A: R - R“, A € S and a constant A,, where (A),:) # (0,0),
so that the equations
(3) xofy.(t.y(c).y'(t)) Ao (t,y(t),y'(e) =

t
= Jo [xofy(t.y(c).y'(t)) + A.¢y(t,y(t).y'(t))]dr. + C
are satisfied wherever y' is continuous and where (. is some constant n-vector
(12, p. 33¢). (If y' ¢ M, then A ¢ M and the equations (3) have to hold
almost everywhere on [0,T] [8, p. 24]. In either case, A is continuous

wherever y' is ccntinuous. (Equations (3) in differentiated form are often

referred to as the Euler-Lagrange equetions or the Mayer equations.)

The Weierstraes condition states that, with ., > 0, whenevcr y' is

0

continuous,
(4) A [fCe,y(t),8) = £(t,y(t),y'(£))] + (y'(t) - &)-IAofy.(t.y(t).y‘(t)) +
+ A.¢y.(t,y(t).y'(t))] >0
has to hold for all £ for whi‘ch ¢(t,y(t),g) = 0. If y' ¢ M, then (4) lLas to
hold a.e. on [0,T] [8, p. 24j.)
If the beginning point of y at t = 0 and the endpoint for some t = T are

allowed to move freely on some specified manifolds, some additional concitioms,
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the so~called transve:salir. cond: o o .

boundary conlitions.

-2t it be noted that in the tormuléticn as well s in the wnalysie of
this problem that leads to (3) and (4), no restrictions other than (1) are
. lacec upon the values of y'(t). This is essentially equ vaient with assuming
that the values of y'(t) lie in an open subset of 7,

The Lagrange problem (1), (2) and the two necessary condicions (3) and
(4) may be interpreted as 4 (vast ) generalization of the problem of finding
the minimum of a (differentiable) real-valued function of & real variable in
an open interval,

Let h: (-1,1) - R, h differentiable, assume its minimum for t = t Then,

0°
by necessity,
(3a) h'(ty) =0
(4a) h(to) < h(E) for all § ¢ (-1,1).

This analcgy is not nearly as far-fetched as it would appear upon first
glance. Actually, the left side of (3) is obtained by a process that is, in

essence, a generalization of the differentiation process to functionals that

are defined on a subset of the sclution set of (1), and (4) is, in effect,



a necessary condition for

jT f(t,y(t),y'(t))dt - jT f(t,y(c),y'(t))dc > 0

0 0
to hold for all solutions of ¢(t,y(t),y'(t)) = O that pass for t = O through
the same beginning point and for t = 1 through the sane endpoint as y.

Pure mathematicul speculation as well as practical problems that were

gwenerated by a modern and very sophisticated technology led to a re-examination
of the scope and the applicability of the Calculus of Variations. To illustrate
this, let us first mention that a continuous function need not assume its
minimum in an open interval, but does assume its minimum in a closed and bounded
interval. Similarly, there are problems which may be formulated as Variational
Problems if the admissible values of y'(t) form an open set, that have no solution,
but do have a solution if the values of y'(t) are restricted to a closed and bounded
set. This is dramatically demonstrated by the example of applying a suitable
external force, say xg, to a moving masspoint, whose location and velocity

are given by (y(t),y'(t)), to make it move from a given initial state

y(0) = x?, y'(0) = xg to the terminal state (0,0) obeying the law of motion

y" = x1(t), in the shortest possible time. With y = x,, y' = x,, we may

formulate this problem as follows: To find (xl, X_» xa) so that xl(O) = x0

2 1

x2(0) = xg, xl(T) =0, x,(T) = 0 for some T > O,



x| = x
(5)
X, * X,
such that
(T
(6) J dt
0

is as small as possible.

This problem which is of the type (1), (2), does not have a solution 1if
the admissible values of x;(t) form an open set, as the reader can easily
convince himself. However, it does have a solution when the values of x;(t)
are - more realistically - restricted to a compact set, say by |x}(t)| <1,
as was first shown by D. Bushaw [2]. But then, this problem ceases to be a
variational problem and it is not immediately amenable to the analysis that
leads to (3) and (4), as well as to other necessary and sufficient conditions
in the Calculus of Variations.

This latter problem is characteristic of the type of problems that are

dealt with in what is now referred to as the Modern Theory of Optimal Control,

a new mathematical discipline that exploded into being in the 1950's. Generally,
the theory of optimal control deals with problems such as the following one: To
find a vector function (control) u: R + R* with u(t) ¢ U where U (control region)

is a given subset of R™ so that the solution x: R + R" (trajectory) of

(7) x' = &(t,x,u(t)), ¢: R x R® x R™ » R",



satisfies certain boundary conditionus at t = 0 and for smme ¢t = 1 - 0 and 18
such that
(T n m
(8) Jlu] = | F(t,x(t),u(t))dt, F: R » R" » K" » R,
0
yields the smallest attainable value. Again, we shali .ssume that F, ¢ and

their partial derivatives of first order with respect to all variables are

continuous. For competition, we either admit u ¢ =, or u ¢ M, In the first

case, the trajectory - if it exists - is secticnally smooth, in the latter

case it is absolutely continuous.

Were it not for the restriction u(t) ¢ U, or if U were open, this problem

would simply be a special case of the Lagrange problem (1), (2). This can be

easily seen by setting u = z', x' - ¢(t,x,u) = ¢(t,x,x"',z"), F(t,x,u) = f(t,x,z').

However, if U is not open or if it is not known apriori that u(t) lie3 in

the interior of U for all t, then the classical arguments that were developed

for the analysis of variational problems are no longer applicable and one faces,

what appears to be an entirely new type of problem, superficial similarities

notwithstanding.

Although successful attempts have been made to deal with special cases of

such problems within the framework of the Calculus cof Variations many years

before the official birth of optimal cortrol theory (see for example [13] in



conjunction with (7)), a unified, comprehensive, ana pecsuasivaly presented

treatment had not appeared (in English) prior to 196z, At that time, L. S.

Pontryagin and his collaborators published a theory, divoiced from the classical

Calculus of Variations, the most widely known aspect of which is what has become

known as Pontryagin's Principle [11].

Ponr~yagin's principle states that for u ¢« S, u(t) ¢ U to be a solution of

the optimal control problem (7), (8) (optimal control), it is necessary that

there exists a sectionally smooth vector function p: R - R" and a constant

pg 2 0 with (p,,p) # (0,0) so that

(9) p' = =p F (t,x(t),u(t))~ p-d (t,x(t),u(t))

for all t where u is continuous and

(10)  poF(t,x(t),u(t)) + p+&(t,x(t),u(t)) < p F(t,x(t),£) + p.o(t,x(t),E)

for all £ € U and all t for which u is continuous. (If u € M, then p is

absolutely continuous and (9), (10) have to hold a.e. on [0,T!.) [1l1], p. 61, 81].
Again, if U is open, or the entire R" space, then (9) and (10) lead to (3)

and (4). (Note that in that case, the partial derivatives of the left side of

(10) with respect to u have to vanish by necessity.) By the same token, (3)

and (4) together with the transversality conditions (note that beginning point

and endpoint of z (u = z') are free) lead to (9) and (10).



However, such a smooth transition process faiis thien U 1s not open. Again,
it is worthwhile to return for a moment to the simple problem of tinding the
minimum of a real valued (differentiablc¢) function of a real variable, but this
(ime, in a closed interval: Let h: [-1,1] » K, tu dirferentiable, assume its
minimum at t = ty ¢ [-1,1]. Unless t, is an interior vnoint of which we have no

spriori knowledge, (3a) is not a necessary condition anymore. Suppose, we

onto

introduce a new independent variable € by means of the smooth map ¢y ¢ R > [-1,1)
that is given by y(¢) = sin 6. Then, the function g which is defined by

g(8) = h(sin 6) is defined and differentiable on R and has the same range as h.
Now, (3a) and (4a) are valid necessary conditions for g to assume its minimum at

t = 6, and we obtain in turn

(3b) g'(eo) = h'(sin 6,)cos 6, = 0,

0
(4b) 8(8y) = h(sin 6,) < h(sin 6) for all 6 € R,
The solution of the criginal problem is then recovered from t, = sin 6.

A similar transformation to transform certein (simple) optimal control
problems into Lagrange problems has been carried out at occassions by engineers
without them ever stopping to realize that they had done something very clever.

of

The author's students, Stephen K. Park, Lawrence M. Hanafy, and Terry A. Straeter
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have investigated the putentia! generalizations ot tiis fdea vith the goal of
establishing the equivalence of optimal control problems with _lassical Lagrange
problems in the sense that with each competing, tunction In the one problem there
corresponds at least one competing functiou in the othe: (ubiem and vice versa,
and, that the integrals to be minimized in the two problems have the same value for
corresponding competing functions. Suppose that P is the control problem which we
formulated in (7), (8) and that y: rP —2252—)U is a continuous map from .ome
cartesian space RP onto the control region U ¢ X, Then, 1f P; is the problem
of finding a vector function z': R » RP so that
(7a) x' = o(t,x,u(z")),
x satisfies the same boundary conditions as in (7), (8), und is such that
T

(8a) J(v(z')] = JO F(t,x(t),y(z"(t))de
yields the smallest possible value, then, since J[y(z')] = J[u] for u = y(z'), the
problem P, is obviously equivalent to P, provided that y maps the set of all competing
vector functions z' by u=y°z' onto the set of all compering vector functions u [9,10].

We note in passing that P, is a special case of the Lagrange problem (1),
(2) with I[z] = J[(v(2')] and can be dealt with within the framework of the

classical theory of the Calculus of Variations. The solutions u of P, can then

be recovered from the solution z' of P, by means of u(t) = y(z'(t)). Note
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also that the trajectory x is, in view of the reiationshi) between ¥ ond P,
the same for corresponding functions z' and u.
To be scttled is still the question of whether or anot there are functions
with the requived property, to wit: | maps the set of all competing functions
z' of P, onto the set of all competing functions u of P .
This problem may be dealt with on various levels. Suppose we consider

', u e S. Our problem may be formulated, without reference to the attending

control problems, in the following manner [10]: Given a continucua map

onto

RP >U., 1Is there, for any given continucus function u: I » U (where
I denotes a clcsed interval) a continuous (or, mavhe, seccionally continuous)
function z': T » RP such that v(z'(t)) = u(t) for all t ¢ I? (See also
Figure 2.)

A partial answer to this last question, in form of a (strong) sufficient

condition may be found in a paper by E. Floyd (4] where he asserts that y has

the required property (which topologists call the lifting property) if there

is a compact set Z C RP go that ¢(Z) = U and if y is open and light on Z,
i.e., maps open sets in Z into open sets in U (in the relative topologies of
Z and U) and is so that the inverse image in Z of each pcint in U is totally

disconnected. This result is too restrictive for our purpose. First, such
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maps do not even exist if m « dim Z and appear to egist for m » dim Z only for
pathological cases, and secondly, even if dim Z = p = m, it e.iminates mappings
that serve our purpose quite well. (In Figure 3 wo depict a mapping y: R _2252,[-1.1]
which 1s a perfectly good mapping for the purpose of transforming the optimal
control problem (5), (6) into an equivalent Lagrange problem, but is neither
open nor light.)

A more satisfactory answer is available, nowever, if one allows bounded
measurable functions as competing functions and we shall therefore call this,
in the time honored tradition, the natural setting for our problem. In this
case, a lemma by Filippov [3] provides for a solution to our problem for a

large class of optimal control problems. Filippov's lemma, reformulated and

specialized to fit our needs, asserts that if U is compact, ¥ is continuous,

v(RP) = U, and if there exists a compact subset Zc:,Rp so that y(Z) = U, then,
for any (bounded) measurable function u: I » U there exists a (bounded)
measurable function z': I - RP so that y(z'(t)) = u(t) for all t e I,

The existence of a function y which satisfies the hypotheses of Filippov's
lemma depends, of course, on the nature of U and has to be established for
various types ot compact sets U. (If U is a right parallelepiped, a function

y with the required property is easy to come by and one may take p = m in this
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case [9]. If U is a compact, convex polyhedron - a v: ry important cype of

control region - severa. such maps which are even smooth, were constructed by
Park with p + 1 equal to the number of vertices of the polyhedron [10]. This,
incidentally, also enabled him to establish the vang=-baug principle [11, p. 117]
orn the basis of (3), (4), and the transversality conditions.)

In all such cases where Filippov's lemma applies, Pontryagin's principle
can be derived from the multiplier rule (3), the Weierstrass condition (4)
and the traneversality conditions [10]. In addition to Pontryagin's principle,
one obtains a set of equations, namely

[PoF, (£,x(t),u(2")) + pog (£,x(£),u(z')]y'(z') = 0
which one may solve algebraically for z' and thusly obtain from u = y(z') the
possible candidates for optimal controls - provided that y is a smooth map.

It is now tempting to utilize all available knowledge about the calculus
of variations, insofar as it pertains to global minima, for the investigation
of optimal control problems that are equivalent with Lagrange problems in the
above sense. Although some early results concerning the use of Weierstrass'
field theory to obtain some sufficient conditions have been somewhat discouraging

(6], such investigations are still under way. Also under consiieration are
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questions concerning the applicability of existing algerithms for the numerical
solution of optimal control problems with an open control region (or Lagrange
problems) to equivalent optimal control problems with a compact control region,

and questions about the existence of optimal controls.

NORTH CAROLINA STATE '"'"NIVERSITY

RALEIGH, NORTH CAROLINA

—



3.

4.

Je

10.

11.

12.

13.

L.

S.

A, Bliss:

W. Bushaw:

15

REFFERIENCES

Lectures on the Cal-ulus of Variations, The University of
Chicago Press, Chicago, 1946.

Differential Equations with a Discontinuous Forcing Term,
Dissertation, Princeton University, 1952,

F. Filippov: On Certain Questions in the Theory of Optimal Control,

E. Floyd:

M. Graves:

M. Hanafy:

SIAM J. Control, Vol. 1, (1962), p. 76.

Some Characterizaticns of Interior Maps, Annals of Math.,
Vol. 51, (1950), p. 571,

On the Problem of Lagrange, Amer. J. of Math., Vol. 53,
(1931), p. 547.

The Linear Time Optimal Control Problem from a Calculus of
Variations Point of View, NASA CR- » (1970).

R. Hestenes: A general problem in the Calculus of Variations with

applications to paths of least time, Rand Corporation
RM 100 (1950), ASTIA document No. AD-112382.

J. McShane: Necessary Conditions in Generalized Curve Problems of the

K. Park:

L.

Calculus of Variations, Duke J., Vol. 7 (1940), p. 1.

Optimal Control Problems as equivalent Lagrange Problems,
NASA CR-1550 (1970).

On the equivalence of Optimal Control Problems and the trans-
formation of Optimal Control Problems into Lagrange Problems,
Dissertation, North Carolina State University, 1970.

S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, R. V. Mishchenko:

The Mathematical Theory of Optimal Processes, Intersc. Publ.,
New York, 1962,

Sagan: Introduction to the Calculus of Variations, McGraw-Hill Book Co.,
New York, 1969.

A. Valentine: The problem of Lagrange with ditferential inequalities as

added side conditions, Contributions to the Calculus of
Variations, 1933-1937, p. 403, The University of Chicago
Press, Chicago, 1937.



2 TSI . -

Rt

FIG.1. The elephant =slide

//

find 2':1 3RP given u: I » U
zcRP > U R®
. g onto U r g

(p(RP) = U )
FIG.2. The 1ifting problem

l

4 e
| 1

|

f

l

-— e - - -
. s —— - — - -— PP ———

_ll

FIG.3. Map tlzt is neither open nor light



	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf

